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The bending elastic energy per unit membrane area, Fc , is
(Helfrich [1973]):

Fc =
kc

2
(c1 + c2 − c0)

2 + k̄cc1c2

where: kc and k̄c are the elastic modules for cylindrical and saddle
bending; c1 and c2 are the principal curvatures at the given point;
c0 is the membrane’s spontaneous curvature. For symmetric
membranes c0 = 0.
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In polar coordinates a quasi-spherical vesicle could be described by
the equation:

r(θ, ϕ, t) = R[1 + u(θ, ϕ, t)]

where: R is the mean vesicle radius; u(θ, ϕ, t) is the deviation
from the spherical shape as a function of the polar angles θ, ϕ and
the time t. For small deformations |u(θ, ϕ, t)| � 1. By definition,
its mean over the time is zero:

〈u(θ, ϕ, t)〉 = 0
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If ~r(θ, ϕ) is the radius-vector of a point on the quasi-spherical
vesicle, parametrized by the polar angles θ and ϕ, then the vectors

~rθ =
∂~r

∂θ
, ~rϕ =

∂~r

∂ϕ
, are tangential to the vesicle membrane and

could be used for a local coordinate system with a metric tensor,
gαβ(θ, ϕ):

gαβ(θ, ϕ) =

(
~rθ.~rθ ~rθ.~rϕ
~rϕ.~rθ ~rϕ.~rϕ

)
and its inverse, gαβ(θ, ϕ):

gαβ(θ, ϕ) =
1

det gαβ

(
~rϕ.~rϕ −~rϕ.~rθ
−~rθ.~rϕ ~rθ.~rθ

)
so, gαγgγβ = δα.

.β (implicit summation over γ is assumed).
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The unit vector normal to the membrane, ~n(θ, ϕ), is:

~n(θ, ϕ) =
~rθ ×~rϕ
|~rθ ×~rϕ|

, ~n.~n = 1

Its derivatives ~nθ =
∂~n

∂θ
, ~nϕ =

∂~n

∂ϕ
, (~n.~nθ = ~n.~nϕ = 0) are

tangential to the membrane, and therefore are linear combination
of ~rθ and ~rϕ. The matrix of the coefficients is the curvature tensor,
Cαβ(θ, ϕ), of the quasi-spherical vesicle surface:

Cαβ(θ, ϕ) =

(
~nθ.~rθ ~nθ.~rϕ
~nϕ.~rθ ~nϕ.~rϕ

)
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Of practical interest is the tensor Cα.
.β (θ, ϕ) derived from Cαβ(θ, ϕ)

by lowering an index using gαβ , Cα.
.β = Cαγgγβ (implicit

summation over γ is assumed):

Its trace is the mean curvature c1 + c2:

Cγ.
.γ = c1 + c2

and its determinant is the Gaussian curvature c1c2:

det Cα.
.β = c1c2

Integrating the bending elastic energy per unit area, Fc , over the
area of the membrane, the vesicle curvature energy is obtained.
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Due to the spherical symmetry it is convenient to express the
deviations from the spherical shape, u(θ, ϕ, t), in series of spherical
harmonics, Y m

n (θ, ϕ) with amplitudes Um
n (t):

u(θ, ϕ, t) =
∞∑

n=0

n∑
m=−n

Um
n (t)Y m

n (θ, ϕ)

Milner & Safran [1987] have shown that the bending elastic
energy, Fc , of a quasi-spherical vesicle at constant vesicle volume
and membrane area is:

Fc =
kc

2

∑
n

∑
m

(n − 1)(n + 2)[σ̄ + n(n + 1)]|Um
n (t)|2

where σ̄ is dimensionless parameter connected to the conservation
of membrane area.
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Fc =
1

2

∑
n

∑
m

kc(n − 1)(n + 2)[σ̄ + n(n + 1)]|Um
n (t)|2

The vesicle energy, Fc , is a sum of harmonic oscillators with elastic
constants kc(n − 1)(n + 2)[σ̄ + n(n + 1)] and amplitudes Um

n (t).
According to the equipartition theorem the mean energy of each

oscillator is
kBT

2
, where kB is Boltzmann’s constant and T is the

absolute temperature. Comparing both expressions Milner &
Safran [1987] obtained:

〈|Um
n (t)|2〉 =

kBT

kc

1

(n − 1)(n + 2)[σ̄ + n(n + 1)]
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Thus the membrane bending modulus, kc , could be calculated by
measuring the mean squared amplitude of spherical harmonics,
〈|Um

n (t)|2〉:

kBT

kc
= (n − 1)(n + 2)[σ̄ + n(n + 1)]〈|Um

n (t)|2〉

The unknown parameter σ̄ must be so selected that the right-hand
side is independent on the deformation mode number, n.
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