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The model of Milner & Safran [1987] links the mean squared
amplitudes of spherical harmonics, 〈|Um

n (t)|2〉, to the elastic
modulus, kc , and the mode’s number, n:

〈|Um
n (t)|2〉 =

kBT

kc

1

(n − 1)(n + 2)[σ̄ + n(n + 1)]

The unknown quantity σ̄ (physical meaning of lateral stretching
tension) could be determined if two (or more) modes are measured
experimentally.

Due to the spherical symmetry, 〈|Um
n (t)|2〉 do not depend on m.
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What is observed by a phase-contrast microscope is the equatorial
cross-section of the vesicle membrane with the focal plane of the
microscope:

r(ϕ, t) = R[1 + u(
π

2
, ϕ, t)]

where u(π
2 , ϕ, t) is the deviation from the circular shape. Writing it

in series of spherical harmonics, Y m
n (π

2 , ϕ), gives:

u(
π

2
, ϕ, t) =

∑
n

n∑
m=−n

Um
n (t)Y m

n (
π

2
, ϕ)

The angular autocorrelation function, ζ(γ, t), is defined as:

ζ(γ, t) =
1

2π

∫ 2π

0
u(

π

2
, ϕ, t)

∗
u(

π

2
, ϕ + γ, t)dϕ
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Replacing u(θ, ϕ, t) with its series expansion:

ζ(γ, t) =

1

2π

∫ 2π

0

∑
k

∑
l

U l
k(t)Y l

k(
π

2
, ϕ)

∑
n

∑
m

∗
Um

n (t)
∗

Y m
n (

π

2
, ϕ + γ)dϕ

and rearranging the terms gives:

ζ(γ, t) =

1

2π

∑
k

∑
l

∑
n

∑
m

U l
k(t)

∗
Um

n (t)

∫ 2π

0
Y l

k(
π

2
, ϕ)

∗
Y m

n (
π

2
, ϕ + γ)dϕ
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Integrating the spherical harmonics leads to:

ζ(γ, t) =
∑
k

∑
n

∑
m

Um
k (t)

∗
Um

n (t)Y m
k (

π

2
, 0)

∗
Y m

n (
π

2
, γ)

The time averaged angular autocorrelation function, ζ(γ), is:

ζ(γ) = 〈ζ(γ, t)〉 =
∑
k

∑
n

∑
m

〈Um
k (t)

∗
Um

n (t)〉Y m
k (

π

2
, 0)

∗
Y m

n (
π

2
, γ)
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Due to the independence of different modes,

〈Um
k (t)

∗
Um

n (t)〉 = 〈Um
n (t)

∗
Um

n (t)〉δkn = 〈|Um
n (t)|2〉δkn

the sum over k could be performed:

ζ(γ) =
∑
n

∑
m

〈|Um
n (t)|2〉Y m

n (
π

2
, 0)

∗
Y m

n (
π

2
, γ)

According to model of Milner & Safran [1987], 〈|Um
n (t)|2〉 does

not depend on m, so:

ζ(γ) =
∑
n

〈|Um
n (t)|2〉

∑
m

Y m
n (

π

2
, 0)

∗
Y m

n (
π

2
, γ)
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The theorem of summation of spherical harmonics reads:∑
m

Y m
n (

π

2
, 0)

∗
Y m

n (
π

2
, γ) =

2n + 1

4π
Pn(cos γ)

where, Pn(cos γ) is the Legendre polynomial.
Thus, the time averaged angular autocorrelation function finally is:

ζ(γ) =
∑
n

2n + 1

4π
〈|Um

n (t)|2〉Pn(cos γ) =
∑
n

BnPn(cos γ)

with:

Bn =
2n + 1

4π
〈|Um

n (t)|2〉 =
kBT

4πkc

2n + 1

(n − 1)(n + 2)[σ̄ + n(n + 1)]
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When one measure the vesicle radius, ρ(ϕ) in a given direction, ϕ,
the result has two components: the radius itself, r(ϕ), and a
measurement error, ε(ϕ), having the property, 〈ε(ϕ)〉 = 0:

ρ(ϕ) = r(ϕ) + ε(ϕ)

The experimentally measured time averaged angular
autocorrelation function is:

ζ(γ) =
1

2π

∫ 2π

0
〈ρ(ϕ)ρ(ϕ + γ)〉dϕ

1

2π

∫ 2π

0
〈(r(ϕ) + ε(ϕ))(r(ϕ + γ) + ε(ϕ + γ))〉dϕ
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Taking into account that the radius, r(ϕ), and the error of its
measurements, ε(ϕ), are non correlated one can write:

ζ(γ) =

1

2π

∫ 2π

0
〈(r(ϕ) + ε(ϕ))(r(ϕ + γ) + ε(ϕ + γ))〉dϕ =

1

2π

∫ 2π

0
〈r(ϕ)r(ϕ + γ)〉dϕ +

1

2π

∫ 2π

0
〈r(ϕ)〉〈ε(ϕ + γ)〉dϕ +

1

2π

∫ 2π

0
〈ε(ϕ)〉〈r(ϕ + γ)〉dϕ +

1

2π

∫ 2π

0
〈ε(ϕ)ε(ϕ + γ)〉dϕ

The second and third terms are zero, because 〈ε(ϕ)〉 = 0, so:

ζ(γ) =
1

2π

∫ 2π

0
〈r(ϕ)r(ϕ + γ)〉dϕ +

1

2π

∫ 2π

0
〈ε(ϕ)ε(ϕ + γ)〉dϕ
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Let us consider the last term. One can suppose that the
measurement errors, ε(ϕ), for different directions, ϕ, are non
correlated, so:

1

2π

∫ 2π

0
〈ε(ϕ)ε(ϕ + γ)〉dϕ = C 2δ(γ)

where: C 2 is the dispersion of ε(ϕ) and δ(γ) is the Dirac’s delta
function. Finally the experimentally measured time averaged
angular autocorrelation function is:

ζ(γ) =
1

2π

∫ 2π

0
〈r(ϕ)r(ϕ + γ)〉dϕ + C 2δ(γ)
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The amplitudes, Bn, of Legendre polynomials are:

Bn

∫ π

0
[Pn(cos(γ))]2 sin(γ)dγ =

∫ π

0
ζ(γ)Pn(cos(γ)) sin(γ)dγ

The last term in the equation for the experimental autocorrelation
function, ζ(γ), thus reads:

C 2

∫ π

0
δ(γ)Pn(cos(γ)) sin(γ)dγ = C 2Pn(cos(0)) sin(0) = 0

Due to the properties of the Dirac’s δ(γ) function and Legendre
polynomials, the integral evaluates to zero. So the experimental
error in determination of ρ(ϕ) do not influence the mean values of
Bn (in condition all the hypotheses made are true).
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Some authors prefer to consider the time averaged angular
autocorrelation function, ζ(γ), as a Fourier series:

ζ(γ) =
∑
m

Ame ι̇mγ

where the coefficients Am are:

Am =
1

2π

∫ 2π

0
ζ(γ)e−ι̇mγdγ

We already know that:

ζ(γ) =
∑
n

∑
m

〈|Um
n (t)|2〉Y m

n (
π

2
, 0)

∗
Y m

n (
π

2
, γ) + C 2δ(γ)

After rearrangement and change of order of summation:

ζ(γ) =
∑
m

∑
n>=m

〈|Um
n (t)|2〉

∗
Y m

n (
π

2
, 0)Y m

n (
π

2
, γ) + C 2δ(γ)
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The Fourier amplitudes are:

Am =
∑

n>=m

〈|Um
n (t)|2〉

∗
Y m

n (
π

2
, 0)

(
Y m

n (
π

2
, γ)e−ι̇mγ

)
+

C 2

2π

where the product
(
Y m

n (π
2 , γ)e−ι̇mγ

)
does not depend on γ (the

term e−ι̇mγ exactly cancels out the γ dependency in Y m
n (π

2 , γ)).

The Legendre polynomial amplitudes (for comparison) are:

Bn =
2n + 1

4π
〈|Um

n (t)|2〉 =
kBT

4πkc

2n + 1

(n − 1)(n + 2)[σ̄ + n(n + 1)]
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Comparison between Legendre polynomial amplitudes, Bn, and
Fourier amplitudes, Am:

I Am are complicated sums over n; Bn are simple rational
expressions

I Am are influenced (biased) by a constant value due to the
errors in determination of the equatorial radius; Bn are not.
(This bias must be subtracted from experimentally measured
Fourier amplitudes but not all authors really do it).

I Am must be fitted using 3 parameters: kc , σ̄ and the bias C 2;
Bn are fitted with 2: kc and σ̄.
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