
The High-temperature Low-order SmAP_F' to Low-temperature High-order SmAP_F Transition

Chenhui Zhu^a, Renfan Shao^a, R. Amaranatha Reddy^b, David M. Walba^b, Noel A. Clark^{a*}

^aDept. Physics, 390 UCB, ^bDept. Chemistry and Biochemistry, 215 UCB, and the Liquid Crystal Material Research Center, University of Colorado, Boulder, CO, 80303, USA

The SmAP_F phase of bent-core materials has long been predicted, and a field-induced SmAP_F has been reported [1]. We have recently observed a stable SmAP_F phase, obtained by design for a dissymmetric bent-core mesogen with only one tail [2]. Here we report studies on a similar dissymmetric mesogen, which suggest the new material possesses the I-SmAP_F'-SmAP_F-Cry phase sequence on cooling, where the SmAP_F' phase is essentially SmAP_F but of lower order parameter of bent-core bow direction. Methods used to study the new material include DSC, X-Ray, and Polarized Light Microscopy in LC Cells and in Freely Suspended Films. The polarization switching behavior of the SmAP_F' and the SmAP_F phases are shown below. The SmAP_F shows the V-shape switching, however the SmAP_F' shows the bistable switching. The switching voltage threshold for the SmAP_F' phase increases as the temperature increases, indicating a competition between thermal fluctuations and the electric field. The freely suspended film results show that the SmAP_F' phase is of low birefringence but exhibiting some splay textures on a very small scale. (Work supported by NSF MRSEC Grant DMR0213918.) References:

- [1] Y. Shimbo, E. Gorecka, D. Pociecha, F. Araoka, M. Goto, Y. Takanishi, K. Ishikawa, J. Mieczkowski, K. Gomola, H. Takezoe. *Phys. Rev. Lett.* **2006**, *97*, *113901*.
- [2] Walba, D. M.; Reddy, R.A.; Korblova, E.; Shao, R.; Jones, C. D.; Zhu, C.; Clark, N. A. Abstracts of the 11th International Ferroelectric Liquid Crystal Conference, 2007, p31.

Polarization switching behavior in the SmAP_F' (top) and in the SmAP_F (bottom).