Quadrupolar and Octupolar Interactions and Stability of Chiral Phase in Lattice Model of Bent–Core Liquid Crystals

L. Longa^a, <u>G. Pająk^a</u>, T. Wydro^{a,b}

a Marian Smoluchowski Institute of Physics, Department of Statistical Physics and Mark Kac Center for Complex Systems Research, Jagiellonian University, Reymonta 4, Kraków, Poland b Université Paul Verlaine – Metz, Laboratoire de Physique Moléculaire et des Collisions, 1 bvd Arago, 57078 Metz, France

The main aim of this study is a demonstration that quadrupolar and octupolar microscopic interactions stabilize globally a homogeneous chiral phase. Investigated model is a generalization of Lebwohl–Lasher type of anisotropic interactions. Presented results are obtained within the Mean-Field theory and Monte Carlo simulations. Phase diagrams include the following structures: isotropic (I), uniaxial (N_U) and biaxial (N_B) nematic phases, tetrahedratic phase (T), D_{2d} -symmetric tetrahedratic nematic phase (N_T), and chiral tetrahedratic nematic (N_T^*) phase of D_2 symmetry. The mechanism responsible for stabilizing N_T^* and N_T structures is interplay between quadrupolar and octupolar interactions. Furthermore, one of the phase diagrams displays a multicritical Landau point where all aforementioned phases meet. The inclusion of higher-order cross-couplings between uniaxial, biaxial and tetrahedratic interactions can superimpose a spatial modulation to the homo-chiral order of N_T^* and to N_T . Thus the new structures found can serve as the long-wavelength limit to a family of spatially modulated chiral structures that can possibly condense in the bent-core systems. Owing to general form of the interaction we use these conclusions should apply to any system where tetrahedratic and quadrupolar order may simultaneously coexist.

<u>Acknowledgments:</u> This work was supported by Grant No. N202 169 31/3455 of the Polish Ministry of Science and Higher Education, and by the EC Marie Curie Actions 'Transfer of Knowledge', project COCOS (contract No. MTKD-CT-2004-517186).